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We investigate an asymptotic model of DiPrima & Stuart (1972b, 1975) describing 
steady Taylor vortex flow between eccentric cylinders, under the assumption that the 
eccentricity E ,  the clearance ratio 6 and the Taylor vortex amplitude A satisfy E ,  6 and 
A small. By solving a boundary value problem for the radial eigenfunctions we 
numerically obtain the flow field of DiPrima & Stuart and investigate its topology, 
after correcting higher-order terms to ensure that the flow preserves volume. We find 
regions of chaotic streamlines at all eccentricities and discuss the reason for their 
existence. We make an analogy between the full model and a modulated vortex flow 
field which qualitatively displays the same behaviour. 

For large eccentricities, we examine the flow field and the topology of its streamlines, 
especially where the two-dimensional flow contains a separated region of recirculation. 
In this case Taylor vortices give rise to transport of fluid particles in and out of the 
separated region. We find that the onset of Taylor vortices encourages recirculation in 
the inflow plane, whilst discouraging it in the outflow plane. 

1. Introduction 
In the 1960s Arnol'd (1965) and HCnon (1965) used dynamical systems theory to 

argue that a steady three-dimensional flow may give rise to chaotic streamlines. At 
present there exist few studies of chaotic streamlines in steady three-dimensional flows : 
Beltrami flow solutions of the Euler equation (e.g. ABC flows (HCnon 1965; Dombre 
et al. 1986); thermal convection in a periodic box (Arter 1983); twisted pipe flow 
(Jones, Thomas & Aref 1989); flow in a heat exchanger (Acharya, Sen & Chang 1993)). 
The lack of examples is easily understood: it is very difficult to derive three- 
dimensional solutions to the equations of fluid motion without using some continuous 
symmetry to reduce the dimensionality of the problem. For this reason, most attention 
has been focused on chaotic particle paths (i.e. chaotic advection) in unsteady two- 
dimensional flows (cf. Aref 1984 and the special issue Physics of Fluids A 3, 1991). 

One fully three-dimensional, steady flow solution was derived some time ago by 
DiPrima & Stuart ( 1 9 7 2 ~ ~  b, 1975) for Taylor vortex flow between eccentric rotating 
cylinders for the case of small eccentricity, small gap and Taylor numbers slightly 
greater than critical. We have investigated their solution for the case of a rotating inner 
cylinder and a stationary outer cylinder and describe in this paper the streamline 
topology and chaotic advection that it gives rise to. 

The classical Taylor-Couette problem consists of infinitely long concentric cylinders 
and an incompressible Newtonian fluid between them. On rotating the inner cylinder 

t With Appendix B by G. Rowlands. 
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at a constant angular velocity, the fluid is forced into motion by the non-slip condition 
on the walls of the container. For values of the Taylor number T (which gives a non- 
dimensional rate of rotation) less than a critical value T,, the only stable flow field is 
circular Couette flow, a two-dimensional flow in planes perpendicular to the axis of the 
cylinders, where all streamlines are closed circles. Increasing T past T, gives rise to 
steady Taylor vortices, ideally through a pitchfork bifurcation. Although the flow is 
now three-dimensional, the rotational symmetry constrains the streamlines to lie on the 
surface of stream tubes (tori) nested within each other. 

The rotational symmetry reduces the problem to two dimensions and hence it must 
be broken in order to obtain a fully three-dimensional steady flow. This is easily done 
by displacing one of the cylinders to an eccentric position, a geometry of interest in 
lubrication technology as well as hydrodynamic stability theory. 

The motivation for this paper came from the desire to apply dynamical systems 
thinking to guess the effect of eccentricity on the streamlines of Taylor vortices. This 
led to the following two ‘generic’ predictions. 

First, small eccentricity results in a perturbed system which should show similarity 
to an area-preserving twist map perturbed from integrability. This should give rise to 
the presence of KAM surfaces separating chaotic regions (cf. Ottino 1989), and the 
measure of the chaotic regions should tend to zero as the eccentricity tends to zero. 

Our second prediction concerns what should happen at large eccentricity. From 
studies of the basic two-dimensional flow it is well known that at sufficiently large 
eccentricity an eddy in the region of widest gap is created by the separation of the fluid 
from the outer boundary and its reattachment downstream (cf. Ballal & Rivlin 1977). 
The flow is divided by an invariant surface known as the ‘dividing streamline’ which 
connects the points of separation and reattachment as figure 2 (c) illustrates. The region 
of recirculating separated flow persists after the formation of Taylor vortices (cf. 
Koschmieder 1976), but is now three-dimensional. Naively one might think that the 
dividing streamline has become a dividing streamsurface, thus forming a separated 
vortex whose streamlines never cross the dividing streamsurface. However, dynamical 
systems theory predicts a more complicated streamline topology : the separation 
surface emanating from the line of separation (the line connecting the points of 
separation in the inflow and outflow boundaries) and the surface of reattachment 
emanating from the line of reattachment will not usually coincide. Instead these 
surfaces will intersect transversely in one-dimensional sets an infinite number of times. 
Thus a separated vortex will not occur and streamlines will wander chaotically in and 
out of the region of recirculation (looking ahead to figure 9). 

The model we investigate is an asymptotic approximation of an exact solution to the 
Navier-Stokes equations. We must be concerned therefore with whether or not the 
approximate solution, at a given truncation of the expansion, models the physically 
important processes sufficiently well to have confidence in its predictions. It is certainly 
true that the approximate solution only approximately satisfies conservation of volume 
(i.e. V - u  is only approximately zero - this is addressed in $4). There may be other 
constraints which are not satisfied, for example some sort of hidden conserved quantity 
which prevents chaotic mixing in all steady flows with these boundary conditions.? We 
have no reason to believe that there may be hidden constraints which the asymptotic 
solutions fails to retain, but we have to take this as a hypothesis to justify talking about 
generic volume-preserving flows. In order to assess the question of how well the 

t Such a situation happens in steady Euler flows where it is necessary that the Beltrami condition 
is satisfied (u.  V x u = 0) in order to have the possibility of chaotic mixing. 



Eccentric Taylor vortex $ow 217 

asymptotic solution models the important physical processes, we have included a 
review of relevant experimental and numerical work. We have also studied the effect 
of changing the order of truncation of the equations from first to second. This results 
in only small quantitative changes to the streamline topology, even when there are 
large regions of chaotic mixing. 

The paper is organized as follows. In $2 we describe the eccentric cylinder system and 
give a review of previous research into steady flows in such a geometry. Then in 0 3 we 
collect the necessary details from the papers of DiPrima & Stuart for flows with 
eccentricity, gap and Taylor vortex amplitude small. Their model is not immediately 
amenable to particle tracking investigations because it only approximately satisfies 
conservation of volume. In order to overcome this, we propose a modification to a 
simplified version of their model that ensures volume conservation by addition of 
higher-order terms. This is outlined in $4. Using this modified velocity field, results of 
some numerical investigations into the structure and mixing of this flow field are 
presented in $5 .  Streamlines (which are equivalent to particle paths in steady flows) are 
followed at a variety of parameter values and we observe the appearance of regions of 
chaotic mixing, even for small eccentricities. Pushing the model to large eccentricities, 
as noted by DiPrima & Stuart, there is prediction of a recirculation region in the largest 
gap. With the addition of Taylor vortex type perturbations, we observe the motion of 
fluid in and out of this recirculating region. In $6 we discuss our results and introduce 
a modulated vortex model to help understand the physics controlling the onset of 
chaotic advection in the small eccentricity limit. Using an analogy from plasma 
physics, G. Rowlands presents in Appendix B a derivation of a Poincart map for this 
model in the small eccentricity limit. Finally, in $7 we point out what we feel are some 
interesting future directions of study. 

2. The eccentric cylinder system 
Figure 1 shows an eccentric cylinder system with inner and outer cylinders of radii 

a and b, and linear speeds q1 = aQ, and q2 = bQ, measured in the counter-clockwise 
direction. The centres of the cylinders are set a distance ae apart, where 

and 0 < € < 1 .  (2.3) 

In lubrication theory, G is known as the eccentricity and 8 as the clearance ratio. The 
radius ratio and clearance ratios are related by 

In this paper we confine our attention to the case p = 0 (i.e. q2 = 0). The 
conventional Reynolds and Taylor numbers are defined by 

aSZ, d R=-. 
V 
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FIGURE 1 .  The geometry of the problem with the modified bipolar coordinates @, c$, &J marked. The 
inner and outer cylinders (of radii a and b respectively) are rotated at frequencies Q, and a, 
respectively. In our investigation, we take as2, = Q and Q2 = 0. 

and thus R = ($)’”, 
where u is the kinematic viscosity. 

A denotes the axial wavenumber. 
We adopt the same notation used by DiPrima & Stuart in their papers. In particular, 

2.1. Phenomenology 
2.1.1. The basic flow 

Sketches of streamlines of the Stokes flow when q2 = 0 (ql asymptotically small) for 
E = 0, 0.2 and 0.5 are shown in figure 2. All streamlines except the dividing one in (c) 
are closed. When the cylinders are concentric, the basic flow is circular Couette flow 
and the streamlines are circles. When the cylinders are made non-concentric, the 
rotation of the inner cylinder gives rise to a varying, circumferential pressure gradient 
which results in a combined Couette and pressure flow around the cylinders. This is not 
axisymmetric. When E is sufficiently large, the flow separates from the outer cylinder. 
The points of separation and reattachment are joined by the dividing streamline which 
separates the flow into two non-communicating regions. (See Ballal & Rivlin 1977 for 
a detailed analysis of the Stokes flow between eccentric cylinders.) 

2.1.2. Onset of Taylor vortices 
Linear stability analysis for concentric cylinders yields a Taylor number versus axial 

wavenumber marginal stability curve for the onset of Taylor vortices. The minimum 
of this stability curve yields T,  and A,. Steady Taylor vortices also arise as the primary 
instability for eccentric cylinders (at least for E not too large). The dependence of T, on 
E has been studied experimentally by several authors (see Eagles, Stuart & DiPrima 
1978 and references therein). These studies indicate that eccentricity is stabilizing when 
p = 0, but when ,u > 0 there is a range of E where eccentricity can be destabilizing (see 
Versteegen & Jankowski 1969; Oikawa, Karasudani & Funakoshi 1989a; Raffai & 
Laure 1991). The dependence of A, on E has been studied experimentally for 6 = 0.375 
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FIGURE 2. A sketch of the streamlines of basic two-dimensional Stokes flow for the case S = 1 .  We 
take 8, = 0 with (a) e = 0, (b) B = 0.2 and (c)  E = 0.5. Note the region of recirculating fluid in (c). The 
effect of the inertial terms on the two-dimensional flow is to deform the flow and to give instability 
in the third direction via the Taylor vortex instability. 

by Koschmieder (1976) and for 6 = 0.205 by Karasudani (1987), and numerically for 
6 = 0.1, 0.205 and 1.0 (Oikawa et al. 1989a, b). For small gaps (i.e. 6 < 0.375) A, was 
found to remain nearly constant up to E M 0.4 and then increase rapidly with E .  In the 
large gap case (6 = 1.0) A, increases rapidly with E .  

An explanation for the rapid increase in A, with E for E > 0.4 was offered by 
Karasudani (1987). He noted that the rapid increase in A, began at values of E close to 
the onset of separation in the basic two-dimensional flow. He argued that the 
streamline connecting the separation and reattachment points acted as a fluid 
boundary. The flow problem defined by this geometry is in some sense close to a 
concentric problem with a smaller gap. Thus one expects both an increase in the critical 
Taylor number as well as an increase in A,. 

Experiments by Vohr (1968) (6 = 0.099, e > 0.707) and Karasudani (1987) 
(6 = 0.205, E > 0.6) show that when E becomes too large, no steady vortex flows are 
found. It is interesting to note that in their numerical linear stability analysis for 
6 = 0.1, Oikawa et al. (1989b) found that the least stable eigenvalues are real for all 
cases calculated except for E = 0.7. 

2.1.3. Position of maximum vortex activity 
According to the DiPrima (1963) local stability theory, based on the parallel flow 

assumption, the most unstable position is the position of widest gap 0 = 0 (0 is the 
polar angle measured around the outside cylinder). DiPrima & Stuart (1972b) defined 
the vortex activity as the radial gradient of the axial velocity at the outer cylinder and 
obtained, by successive improvements in their analysis, 0, = 90", then 0, = 76" in 
DiPrima & Stuart (1975), and 0, = 49" in Eagles et al. (1978). It should be kept in 
mind that these values are obtained for h = 3.127. 

In his experiments, Vohr observed that the apparent intensity of vortex circulation 
varied considerably around eccentric cylinders. He remarked that at E = 0.475 the 
vortices were observed to be most strongly developed at a point approximately 50" 
downstream of the point of widest gap at T = 1.2T,. (T, is the critical Taylor number 
for the onset of Taylor vortices at E = 0.475. Note that throughout this paper T, refers 
to the critical Taylor number at the relevant 6, e and h.) 

In a wider gap system (6 = 0.375), Koschmieder reported being unable to locate a 
position of maximum vortex activity by visual observation. His results suggest that the 
variation in vortex activity around the cylinder becomes weaker as 6 increases. 

Oikawa et al. (1989b) computed steady Taylor vortex flows at several Reynolds 
numbers for (8, E )  = (0.1, 0.475) and (0.205, 0.5). For the case (6,s) = (0.1, 0.475), 
computed with h set to 3.273, they found 0, = 97.8", 85", 100.7' at T/T,  = 1.08, 1.19, 
1.3 1 respectively. The result 0, = 85" at T = 1.19T, corresponds to Vohr's conditions. 
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Oikawa et al. point out that at these parameter values the radial gradient of the axial 
velocity exhibits an exceptionally wide, flat peak, and note that in such a case it would 
be difficult to determine 0, accurately by flow visualization. For the case 
(8, e) = (0.205,0.5), computed for h = 3.345, they found that 0, decreased from 115.9" 
at T =  1.02T,to 101.6"at T =  1.17T,,andthenincreasedagainto 113.3"at T =  1.75T,. 

On the other hand, Dai, Dong & Szeri (1992) computed Taylor vortex flows for a 
system with ( 8 , ~ )  = (0.096, 0.4) with h = 3.127 and found that 0, decreased 
monotonically from 90" at T = T, to about 58" at T = 1.3T,. At T z 1.2T, they obtain 
0, z 63". Their results clearly show a different trend for the dependence of 0, on T, 
but they did not study its dependence on e. 

In summary, the situation is this: 
(i) The DiPrima & Stuart model predicts that when h is set to 3.127, the position of 

maximum vortex activity decreases monotonically from 90" at T =  T,  to 49" at 
T = 1.2T,. They do not discuss the general dependence of 0, on T, 6, e, though this 
may be recovered from their papers. 

(ii) Dai et al. find that for a smaller eccentricity (e  = 0.4) but the same h used by 
DiPrima & Stuart, 0, decreases monotonically from 90" at T = T, to about 63" at 
T = 1.2T,, which is in agreement with the trend predicted by the DiPrima & Stuart 
model. 

(iii) Oikawa et al. computations use (apart from A)  the same parameter values as 
Eagles et al. They find that for T 2 T,, 0, is larger than 90" and oscillates in value as 
T is increased to l.l9T,. They find a similar situation for a larger gap system 
(6 = 0.205). 

It is tempting to conclude that Oikawa et aZ.'s results show that Vohr's conditions 
lie well outside the domain of validity of the asymptotic model. However, it should be 
noted that there is at present insufficient numerical and experimental data available to 
state how 0, varies with the parameters T ,  8, e and A. In particular, it should be borne 
in mind that the dependence of 0, on h has yet to be investigated. Although the value 
used by Oikawa et al. ( A  = 3.273) is only 5 % larger than that used by Eagles et al. and 
Dai et al., it may prove significant. Because Vohr's observation was subjective and 
qualitative it cannot be used to clarify the situation. Clearly further work is required. 

2.1.4. Taylor vortices and separatedflow 
A region of reversed flow, which makes its first appearance in the basic two- 

dimensional flow, also occurs in the region of widest gap after onset of Taylor vortices 
(Vohr 1968; Koschmieder 1976; DiPrima & Stuart 1972a; O'Brien, Jones & Mobbs 
1974; Dai et al. 1992). 

The variation in the angular position of the separation and reattachment points with 
eccentricity after the onset of Taylor vortices was investigated by O'Brien et al. (1974) 
in an apparatus with S = 0.1. They reported that near T,  the positions of the separation 
points are not axially dependent and do not depart greatly from the positions observed 
at T,. However, as T is increased, the positions of the separation points become axially 
dependent. They also report that separation at the outer cylinder wall is delayed in the 
vicinity of the outflow boundary between vortex pairs. Inspection of their figure 2 
shows that the positions of separation and reattachment are asymmetric about the 
position of widest gap. As e is increased, both points move in the direction of rotation 
of the inner cylinder. 

According to the DiPrima & Stuart (1972a) perturbation theory for the basic flow, 
separation is expected to occur at e > 0.317 for S = 0.375. In agreement with this 
prediction Koschmieder (1976) observed separation at T, for e = 0.371 but not for 
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e = 0.278. Surprisingly however, separation was observed at e = 0.278 when T > T,. 
Koschmieder also observed that as T was increased the separation line moved 
upstream at both eccentricities. 

Recently Dai et al. (1992) computed Taylor vortex flows for a system 6 = 0.096, and 
studied the qualitative changes to the flow pattern as T increases past T, for e > 0.3. 
They found that for e = 0.4 and T < T,, the flow is two-dimensional and contains a 
region of recirculation. When T is increased past T,, Taylor vortices develop, distorting 
the recirculation pattern. On increasing T further, the axial dimension of the domain 
that contains the recirculation gradually shrinks while its radial dimension at the 
position of widest gap increases in the in-going jet and decreases in the out-going jet 
between vortices. By T z 1.4T, the recirculation pattern has disappeared in the 
outward jet, and the axial dimension of the domain has decreased to about half the 
vertical dimension of a vortex. They also find that the recirculation domain is not 
symmetric with respect to the angular position of the widest gap. They describe the 
recirculation region as being ‘ bounded by a closed surface of vanishing radial 
velocity.. . ’. Comparison of their figures 6d and 7 suggests that they identified instead 
a surface corresponding to vanishing tangential velocity. (This has been confirmed by 
Professor Szeri.) 

Summarizing, it has been found that Taylor vortices have the following effect on 
separated flow: 

(i) The outflow jet suppresses and the inflow jet enhances the recirculation region. 
(ii) As T- T, is increased, the domain of recirculation deforms and shrinks in the 

(iii) Flow separation occurs for values of e less than that for the basic flow. 
axial direction, eventually disappearing in the outflow. 

3. The DiPrima & Stuart model 
From here on we will refer to DiPrima & Stuart ( 1 9 7 2 ~ )  as paper I, DiPrima & 

Stuart (1972b) as paper I1 and Eagles et al. (1978) as paper 111, indicating which 
equations we are using (as in Eagles et al. 1978). 

3.1 The stability problem 
The stability problem was first considered by DiPrima (1963) who developed a local 
theory based on the parallel flow assumption, commonly used in boundary-layer 
stability, viz. the effect of azimuthal dependence of the tangential velocity is neglected. 
This theory gives a ‘local’ criterion for instability, local in the sense of having a critical 
Taylor number, T,, for each angle around the cylinder. Specifically, the local theory 
predicted the flow to be least stable at the position of widest gap. 

An explanation of Vohr’s observation of a position of maximum vortex activity 50” 
downstream from the position of widest gap was achieved by the ‘global’ theory of 
paper I1 which takes into account the fact that the basic flow depends on two 
coordinates (radial and azimuthal). This feature results in stability equations that are 
partial differential equations. The solution required is a ‘global’ one, in that the flow 
field at all points must affect the stability characteristics. Additional goals of the theory 
were to predict how the critical Taylor number for the onset of Taylor vortices, T,, 
varied with 6 ,  and to determine how the torque and load on the cylinders were affected 
by eccentricity. We now follow paper I11 closely and summarize the results of papers 
I, I1 and 111. 

In paper I, DiPrima & Stuart derived the flow field between eccentric cylinders from 
the Navier-Stokes equations by an expansion in two small parameters, 6 and R,, 
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where R, is a modified Reynolds number proportional to ql(b-a)'/av, and e was 
followed to take any value in the range 0 < e < 1 .  Their perturbation theory predicted 
separation of the basic flow when 

e > 0.3028 +0.03826. (3.1) 

In paper 11, DiPrima & Stuart pointed out that their approximation to the tangential 
velocity of the basic flow V (11, 4.1 1) preserves the property of two-dimensional flow 
separation for e 2 0.28 (see 11, p. 402, below (II,4.18)), a result which is different from 
their two-dimensional result of I quoted in (II,2.17) and shown here as equation (3.1). 
The linear stability of the basic flow was considered through a calculation to order ea 
in which 61/2 was held proportional to e as this tended to zero. The resulting T, (for 
A, = 3.127) is given in equation (111, 4.3): 

T, = 1694.97 (1 + 1.16186) (1 + 2.61852) + O(P,  e26, e4). (3.2) 

The dependence on e and 6 gave slow increase with e, in close agreement to many 
observations (see figures 2, 3 and 4 of paper 111). An additional prediction was that, 
since the stability problem is non-local, the position of maximum vortex activity lies 
not at the position of maximum gap, where the basic flow is most unstable, but is 
shifted substantially downstream, in qualitative agreement with Vohr's observation. 
The angular position given by this theory is 90". 

In paper 111, the perturbation equations were nonlinear in the Taylor vortex 
amplitude, but the expansion was taken only to order e. Nonlinear and eccentric effects 
were brought in simultaneously by making the Taylor vortex amplitude proportional 
to ell2. An improved prediction of 76" was obtained for the position of maximum 
vortex activity . 

Finally in paper 111, the nonlinear calculation was taken to higher order and a 
prediction of 49" for the angular position of the position of maximum vortex activity 
was obtained. Such excellent agreement with Vohr's observation is unexpected (as 111, 
p. 222 made clear) since the 'small' parameters are outside the range for which 
perturbation theory is expected to be valid. As mentioned before, the dependence of 
maximum vortex activity on T and e requires further study. 

3.2. The coordinate system 
We assume no-slip boundary conditions at the cylinder walls, and periodic boundary 
conditions in the c-direction. We consider the flow field when the outer cylinder is 
stationary and the inner cylinder is rotated about its axis at a uniform linear velocity 
Q. This assumption means that in the notation of DiPrima & Stuart (1975) we set 

41 = Q, 92 = O ,  

implying that c = 2(q1 - q2)/(q1 + q2) = 2 in I, I1 and 111. Naturally, it is possible to 
perform similar numerical experiments for more general values of q1 and q2. 

We first introduce the modified bipolar coordinate system of Wood (1957) used by 
DiPrima & Stuart to parameterize the problem in terms of the bipolar radius p E [ l ,m, 
angle $ ~ [ 0 , 2 7 ~ ]  and height ~ E R .  In the plane perpendicular to the c-axis, the 
coordinate system is transformed from conventional polar coordinates z = r exp i0 to 
the modified bipolar coordinates w = p exp i$ through the conformal transformation 

z=- a(w + Y) 
1 + y w  ' 
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where 

These coordinates have the advantage over conventional bipolar coordinates that they 
have a regular limit as e + 0, allowing one to recover the concentric results. Figure 1 
diagrammatically shows this coordinate system for eccentricity E and radius ratio 
7 = a/b (which is approximately given by 7 - 1//3). The radial coordinate is non- 
dimensionalized by setting a = p- 1 = 6(1 -e2)’” [1+ 0(6)] and 

p = 1 +a(x+f). 

The new radius variable x E [ - f, 3 corresponds to the inner cylinder at x = - + and the 
outer at x = f. 

The Jacobian that transforms Cartesian coordinates into this system is given by 

and an element of length by 

The height is typically scaled to give 5 = C/(aa) and we will fix the periodicity in the 
(-direction to be of period 2x/A for some A, the axial wavenumber (to be determined) 
by defining the scaled height 

A 
aa 

z = A( = -<. 

Our starting point is the asymptotic expansion in powers of the eccentricity 
obtained by DiPrima & Stuart. Unfortunately, we cannot hope to include the details 
necessary to understand the derivation of the model, so we refer the reader to papers 
I1 and 111. 

DiPrima & Stuart assume that there are three small quantities : the relative gap a, the 
difference of the Taylor number from its critical value T-T ,  and the eccentricity E. 

They perform the expansion in the region where the following relationship holds: 

a = 4k2s2 

for k constant as e + 0, and where the Taylor number is near the critical value T,  (T ,  
denotes the critical Taylor number at e = 0). We can non-dimensionalize the problem 
by setting the inner cylinder radius and the kinematic viscosity both to unity, by scaling 
time and space in the Navier-Stokes equations : 

a =  1 and v =  1. 

Thus the only parameters left in the problem are the eccentricity e, k and the inner 
cylinder speed Q = Tt /2a -3 /2  with the relationship 

(3.4) 

The amplitude of the Taylor vortices scales like 
amplitude of the Taylor vortices to be small and independent of s and a. 

but we shall merely consider the 
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3.3. Solution for small eccentricity 
The asymptotic solution of the Navier-Stokes equations are given by (111, 2.9)-(111, 
2.11) and expanded as in (111, 3.6)-(111, 3.8). After scaling the velocities by l/Q, we 
have : 

a 1 

2 aQ 
up = -€u(x,$)+-€1/2uTv, 

244 = ;V(x,$)+€1/2vTv, 

where 

uc = tV(X, $) + VTV, (3.5) 

2kE3/2 
uc = 7 w T V '  

0 

The amplitude of the Taylor vortices is contained in the perturbation terms ui, vi 
and wi. 

3.4. Eccentric Couet te j o  w 
Before the onset of Taylor vortices, the perturbation of Couette flow by the eccentricity 
gives a two-dimensional flow that is described by the above equations with 
ui = vi = wi = 0 and the functions U and V given by (111, 2.5), (111, 2.6) 

V = K(x)  + EV,(X, $) + c2 [ V,,(X) + kTt/' V21(~, $) + 4k2 V22(~)] + O(e3), } (3.6) u = U,(X, $1 + O(4, 

where (111, 2.7), 

V, = 1 -2x, V, = ~(x~-+)cos$ ,  V,, = 3(x2--;), 

V 21 = (x2--+)[~(&-x2)-~x(&-x2)]sin$, V22 = x'--I 47 U 0 = 2(x2-+)(x-i)sin$. 

3.5. Taylor vortexjow 
The perturbed velocity fields including Taylor vortex effects are given by the functions 
ui, vi and wi in (111, 3.6)-(111, 3.8). 

u,, = - B($)f,(x) cos z ,  u0 = B($) go(x) cos z ,  w, = A-lB($) Df,(x) sin z, (3.7) 

where D = d/dx. The functions fo,g, are the solutions of the eigenvalue problem (11, 
5.4)-(111, 5.6) with 

The functions for i = 0 are given by (111, 4.1): 

= 0; viz. 

(3.8) I (D2-A2)2f0+A2G Vog, = 0, 

f ,  = (D2-A2)go = 0, 

f ,  = Df, = g o  = 0 at x = k;, 
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normalized so that D”f,(-$) = 1 (11, p. 407) and where the axial wavenumber h is 
chosen to minimize T,, i.e. at 

T, = 1694.97, h = 3.127. (3.9) 
This is essentially the concentric stability problem; see (111, p. 94). From here on we 
shall assume that the parameters take these values. As described in 93.7, B($) comes 
from determining the higher-order approximations and using solutions to the adjoint 
problem of (3.8). 

3.6. Second order 
The next order of approximation is given by (111, 4.2): 

I (3.10) 
The functionsf,,, gl, are the solutions of the non-homogeneous (regular) problem (111, 
4.3F(III,4.4) : 

1 =-B2 ($)f,,(x) cos 22, 01 = v,o(x, 9) + B2($)g1,(x) cos 22, 
w1 = (2h)-l B2($) Df,,(x) sin 22. 

(3.11) I flz - (D2 -4h2)glZ = U0 Dgo -go Df& 

f,, = Df,, = g,, = 0 at x = &:. 

v10 = B2($) glO(X) + +qo(X2 -$), 

(D2 - 4h2)2fz + 4h2T0 &g,, = -f, DYo + (Df,) D2f, - 2h2T,g:, 

Furthermore, vl0 is given by (111, 4.8)-(111, 4.12) and (111, 4.26a), (111, 4.30): 

I (3.12) 

g d x )  = - $6(X) - 3Q0(x2 -$I, 

3.7 The azimuthal dependence 
The function B($) necessary to complete the vector field described above is given by 
the integral of an equation of Bernoulli type. However, expanding T = To+eT,+ ... 
(111, 3.4), in the limit + 0, linearized theory gives an approximate solution (111, 5.6) 

(3.13) 

with the constant w = 1.122 (111,4.30) and A (written Bo(k) in DiPrima & Stuart 1975) 
is an arbitrary constant, not determined in the linear approximation. This non- 
dimensional Taylor vortex amplitude A is proportional to T:I2 for small q. Note that 
this approximation necessarily gives the maximum vortex activity 90” downstream of 
the large gap. 

The normalization D3f,(-+) = 1 producesf,, Df, and go of small amplitude: 

maxlfol = 3.7 x maxlDf,l = 1.2 x lo-’, maxlgol = 1.73 x 

Thus, comparing the amplitudes of V and vTv at, for example, a = 0.097 and E = 0.1, 
we find that they are of the same order when 

indicating that the values of A used in $ 5  are moderate in the sense that the Taylor 
vortices can still be considered as a perturbation of the eccentric Couette flow. This 
scaling can be attributed to the large eigenvalue T, in equations (3.8). 

5 5 X 

A - 103, 
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4. Ensuring volume preservation 
The flow field (3.5) is an approximate solution to the momentum equation (for a 

suitable pressure) and the continuity equation. The no-slip boundary conditions are 
exactly satisfied at each order. Since V . u is only approximately zero, fluid elements do 
not preserve their volume. In order to examine the motion of particles under the action 
of such a flow field, it is necessary that we construct a volume-preserving vector field 
Y with 11 Y-XII small (we use the supremum norm) and the boundary conditions 
preserved, where X is the original vector field. The problem stems from the facts that 
the 4 variable has a different order of magnitude to that of (x ,  z )  and also the equation 
for volume conservation has a nonlinear dependence on E .  Truncating at any particular 
order will not guarantee exact volume preservation. The continuity equation in 
modified bipolar coordinates is 

P.  Ashwin and G .  P .  King 

We consider the problems for the underlying two-dimensional flow and the Taylor 
vortex flow separately. 

In the following, we simplify the Jacobian by approximating the square root (3.3) 
expanding up to and including terms in c2. This has the form 

(4.2) 
- c2 J1" = 1 +ECOS++-  

2 

(cf. (111,3.9)) and is consistent with the model of DiPrima & Stuart up to second order. 

4.1. The two-dimensional problem 
This was corrected by using the given function V(x, 4) to generate a streamfunction 

where terms of order higher than e2 in the integrand are ignored, and then the two 
modified velocity components are given by 

I "112 a?iJ 
ax 

V ( X , ~ )  = - J  - 

(4.4) 

(4.5) 

Appendix A gives these expressions in full; note that they agree with the expressions 
obtained by DiPrima & Stuart up to second order. 

4.2. The Taylor vortex perturbations 
As noted in (111, p. 92), at second order the mean field vlo(x,g5) induces a modifi- 
cation to the radial velocity us0 to ensure the continuity equation is satisfied. 
Therefore, we first correct the radial component of the velocity by noting that 

for a velocity field independent of z. Note that because we use a higher-order 
approximation to J than J = 1, extra terms at higher order than u30 are also created and 
these break the boundary condition at x = i. It is necessary to correct all terms using 
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FIGURE 3. Mappings on the surface of section q5 = 0 (position of widest gap) and a representative 
trajectory for the first-order DiPrima & Stuart model. The outflow is at z = 0 and the inflow is at 
z = 7c. These figures show changes in the mapping for increasing Taylor vortex amplitude A in the 
case B = 0.1, S = 0.096. Between 600 and 1000 iterates are shown for each of 8 initial conditions. (a) 
A = 100: the flow is filled with KAM tori almost everywhere; the topology of the flow is very close 
to that for concentric Taylor vortices. (b) A = 500: a period-four Poincark-Birkhoff island chain has 
been formed. (c) A = 1000: the islands near the edges of the vortex become smaller in size and there 
is a large stochastic layer. (d )  Also at A = 1000: a representative trajectory is shown projected into 
the plane w = (1 + x) ei+. In this projection, the inner and outer cylinders appear as concentric circles 
and the gap between them is dilated. 

X Re (4 

the same approximation of J ,  otherwise we cannot expect to achieve exact preservation 
of any approximate volume. 

The Taylor vortex perturbation terms other than vl0 are corrected in the 5 
component of the velocity using 
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FIGURE 4. To compare with figure 3(c), this figure shows the second-order approximation of the 
DiPrima & Stuart model at the same surface of section and initial conditions, with E = 0.1, 8 = 0.096 
and A = 1000. The similarity between this and the first-order approximation lends support to the 
existence of chaotic advection of the exact solution to the Navier-Stokes equations. 

This introduces a small axially periodic correction term at the same order of 
perturbation as w2 and ensures that the continuity equation is exactly satisfied. We 
denote the flow field corrected as above by (Gp, G4, GJ. 

The results displayed were obtained truncating at first order u, and u,, except where 
indicated. We have performed particle tracking including the second-order terms 
derived by DiPrima & Stuart (u,, u, and w,). Even though the adjusted velocity field 
does not exactly satisfy the boundary condition at x = f (although it does at x = -+ 
and in the (;-direction) the results were very similar to those given in $ 5  even for 
moderately large 6 and A (compare figures 3 c  and 4). No doubt there do exist 
perturbations of the second-order vector field that preserve all boundary conditions 
exactly, but we could not find a natural choice. 

The differentiations and integrations outlined above were performed by an algebraic 
manipulation program to generate the optimized Fortran code necessary to evaluate 
the functions at any value of (x, $, z )  in the domain. The reason for using different 
corrections in the different components was to reduce the complexity and thus increase 
speed. Note that it would be unphysical to correct the given Couette flow by 
introducing a component in the z-direction, so we are forced to correct this flow in the 
(x, $)-plane. 

4.3. Numerical method 
An approximation of the vector field was obtained by first solving the eigenvalue 
boundary value problem (3.8) to obtain Chebyshev polynomial representations off,, 
go, fiz, g, ,  and necessary (exact) integrals and differentials of these. The particle paths 
were then tracked for this approximated field. 

The boundary value problems were solved using a Chebyshev series collocation 
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method (NAG routine D02JBF, Numerical Algorithms Group, Oxford, UK). The 
results were compared for calculations using between 10 and 20 collocation points in 
the radial direction; little qualitative difference was found in the results. The displayed 
results were calculated using 15 point collocation. 

The particles were tracked by solving the following system of three first-order 
ordinary differential equations : 

a P a 

for given initial conditions. We have scaled zi by a factor of ell2 to ensure that these 
equations do not become singular as c + O ;  recall that 01 = O(c2). A Runge- 
Kutta-Merson initial value solver with variable step-size (NAG routine D02BHF) was 
used to plot the intersections of the particle paths with the plane q5 = 0 (the largest gap 
between the cylinders). 

5. The streamline topology 
5.1. Small eccentricity 

For eccentricities less than c = 0.28, there is no region of recirculation; u4 is always 
positive for small enough A .  As outlined in the introduction, we do not expect that the 
flow field should be completely integrable unless e = 0 due to the continuous symmetry 
group for the concentric case. Instead, the mapping on the surface of section 9 = 0 
should be a generic map that preserves an area-form. We briefly review such 
predictions and refer the reader to Ottino (1989) and Arrowsmith & Place (1990) for 
more details. 

The symmetry at E = 0 means that the Taylor vortices induce a mapping on a surface 
of section that is an integrable twist map, i.e. there is a central closed streamline about 
which all others turn at a variety of winding rates or numbers. About this central 
streamline, there is a set of nested stream tubes. The boundaries of these tubes intersect 
the surface of section at a set of nested invariant circles on which the winding number 
is constant. The winding number varies continuously according to which invariant 
circle one is on, and takes rational values on a dense set of these invariant circles. Fluid 
cannot be advected across these invariant circles. A generic perturbation which breaks 
the rotational symmetry of the concentric case will break the integrability of the twist 
map, and a variety of effects will become noticeable: 

(i) Those invariant circles that are ‘sufficiently irrational’ in the sense of the KAM 
theorem will remain invariant until a finite level of perturbation from integrability is 
reached. 

(ii) The invariant circles which have rational winding numbers will for c > 0 give 
pairs of alternating elliptic and hyperbolic periodic points. The map can be 
renormalized near the elliptic points to see the whole pattern again, on perturbing 
further from integrability. 

(iii) The hyperbolic points created in (ii) will have stable and unstable manifolds that 
generically intersect transversely, creating chaotic horseshoe-like behaviour. The 
domain of this chaos is exponentially small for small perturbations but can expand to 
mix over almost the whole surface of section. 
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FIGURE 5(a, b) .  For caption see page 232. 
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5.1.1. Chaotic streamlines 

Increasing the amplitude of the Taylor vortices A gives rise to a breakdown to chaos 
that is typical for area-preserving twist maps. This is illustrated in figure 3 for the case 
E = 0.1, S = 0.096. This figure shows the intersection of the streamlines with the surface 
q5 = 0 (the position of widest gap). At small amplitude (figure 3a, A = 100) the flow 
is filled with KAM tori almost everywhere ; the topology of the flow is very close to that 
for Taylor vortices in concentric cylinders. On increasing A further (figure 3b, 
A = 500) there are seen to be four islands formed by the breakup of an invariant circle 
with rational winding number. Finally, we show for A = 1000 (figure 3 c) that many of 
the KAM tori have broken up, leaving large areas of chaotic mixing interspersed with 
islands of no mixing. At the same parameter values, figure 3(d)  shows a single 
representative trajectory projected into the w = (1 + x) ei$-plane. Figure 4 shows that 
on including the second-order terms in the expansion for the velocity field, there is a 
striking quantitative and qualitative similarity. This supports the conjecture that the 
chaotic mixing is not an artifact of the truncation. 

5.2. Large eccentricity 
As described earlier, a region of recirculation occurs when E is increased past a critical 
value. Figure 5 (a-c) shows the surface of sections for small-amplitude Taylor vortex 
flow with separation at E = 0.5; the amplitudes of the Taylor vortex motion are 
A = 100, A = 500 and A = 1000 respectively. In the basic two-dimensional flow the 
region of recirculation is defined by the dividing streamline. For the three-dimensional 
Taylor vortex flow one might naively suppose that the dividing streamline has become 
a dividing streamsurface and hence infer the existence of a separated vortex. Dynamical 
systems theory arguments suggest instead that there exist two important stream- 
surfaces. One of these surfaces is the unstable manifold emanating from the orbit 
connecting the separation points in the inflow and outflow, and the other surface is the 
stable manifold emanating from the orbit connecting the reattachment points in the 
inflow and outflow. In order to form a dividing streamsurface from these two surfaces, 
they must coincide. This will not occur generically; instead they will intersect one 
another transversely and so if they intersect once, then they intersect an infinite number 
of times, on one-dimensional sets. These intersections allow the streamlines to pass in 
and out of the recirculation region for all A > 0. Figure S(a-c) verifies the correctness 
of the dynamical systems theory arguments. Note that in this figure, the region of 
backflow is indicated by crosses on the surface of section. Figure 5(4 shows (as in 
figure 3 d )  a single trajectory at A = 1000. The trajectory can be seen to enter and leave 
the region of recirculation in a chaotic manner. 

For eccentricities large enough for separated flow to occur, it is no longer possible 
to claim that we are perturbing from an elliptic integrable situation as A increases. In 

FIGURE 5. As in figure 3, but now with E = 0.5 (again 6 = 0.096). At this eccentricity there is separated 
two-dimensional flow when T < T, (i.e. A = 0). The crosses indicate the trajectory passing through the 
section in the negative #-direction. Thus the region marked with crosses corresponds to the flow 
reversal part of the recirculation region. (a) A = 100. (b) A = 500. This section indicates that the 
mixing is very efficient except near the 'core' of the vortex. (c) A = 1000. There are no longer any 
signs of KAM surfaces in the section; most initial conditions mix throughout almost the whole of the 
vortex. Note the slight suppression of the recirculation in the neighbourhood of the outflow ( z  = 0) 
and its enhancement in the neighbourhood of the inflow ( z = R ) .  ( d )  Also at A = 1000: a 
representative trajectory that passes in and out of the recirculation region. As in figure 3 (d ) ,  we have 
taken the projection w = (1 + x) e'c. 
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FIGURE 6. The zeros of the azimuthal velocity ug = 0 are plotted in the (x, $)-plane at five different 
z levels using the first-order truncation. z = 0 is the outflow, z = x the inflow. These locations are 
obtained for A = 1000, B = 0.5 and 8 = 0.096. Note that the effect of the vortex amplitude is greatest 
downstream of the largest gap (4 x 1 radian). 

fact, at lower values of the Taylor vortex amplitude, there seem to be large regions of 
chaotic mixing. Note that as the Taylor vortex amplitude is increased, there is a 
tendency to enlarge the recirculation region in the inflow and shrink that in the 
outflow, as observed numerically by Dai et al. (1992) and experimentally by O'Brien 
et al. (1974). Figure 6 shows the location of flow reversal (i.e. u4 = 0) plotted in the 
(x ,  $)-plane for five different levels of z going from the outflow ( z  = 0) to the inflow 
( z  = n). This was computed for 8 = 0.5, A = 1000 with the first-order approximation. 
The enlargement of the recirculation in the inflow and reduction in the outflow is 
supported by numerical investigations, and also by observation of experiments in our 
laboratory. We now turn to this aspect of the flow geometry in more detail. 

5.2.1. Skin friction jield 
In the region of parameter space where the recirculation region is created, we can use 

the model to describe the bifurcations and the fixed points they give rise to. To 
investigate the flow near the outer cylinder when this region is small, we use the skin 
friction field, defined on the outer cylinder x = a by 

The solution paths of the skin friction field give the streamlines for the model 
asymptotically close to the outer cylinder. Stagnation points on the boundary 
correspond to zeros of the skin friction field. The inflow and outflow boundaries have 
w2 = 0 due to the reflection symmetry in their planes and so we can examine separation 
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and reattachment points there by merely computing roots of w4 = 0 in these planes. 
Figure 7 shows the results for several eccentricities and a range of Taylor vortex 
amplitudes for first-order approximations ; the corresponding results for second order 
are shown in figure 8. The angle 0 is the angle measured from the centre of the outer 
cylinder, with 0 = 0 at the largest gap; this was computed using equation (II,6.17). As 
is apparent from this figure, the DiPrima & Stuart model predicts that the recirculation 
region in the inflow is enlarged by imposing low-amplitude Taylor vortex motion while 
the recirculation in the outflow is reduced. These results offer an explanation for the 
observation by Koschmieder (1976) of flow separation for T > T,  at lower E than 
necessary for separation in two-dimensional flow ( T <  T,). Although he did not 
elaborate on whether the observed ‘premature’ separation was in both inflow and 
outflow, we suggest that separation probably did not occur in the outflow. 

Collecting the results for large eccentricity (but small Taylor vortex amplitude) we 
conclude that the stagnation points in the fluid and on the skin friction field connect 
together to give a flow skeleton (MacKay 1994). This is shown in figure 9. The 
interconnecting orbits transversely intersect in the generic case, implying the existence 
of chaotic streamlines near them. 

5.3. Premature separation 
In this section we offer an explanation for the premature flow separation in the outflow, 
described above. As Prandtl (1905) first observed, a small amount of suction can 
prevent or delay separation. Since the outflow jet imparts a component of the velocity 
normal to the wall, we suggest that the outflow jet acts much like wall suction and 
hence will tend to suppress separation. Conversely the inflow jet acts like ‘blowing’ and 
hence will promote separation. We make this idea clearer by examining the Taylor 
vortex perturbation in the $ component of the skin friction field. This is given (after 
scaling by J 1 l z / a )  by 

where x is taken to be i, the outer boundary. Consider an eccentricity e0 such that 
Couette flow is about to separate at, say $ = This means that for B($) = 0 we have 
W$ = aw,/a$ = 0, Kl = a2w+/i3$2 > 0 and K, = aw,/ae < 0 at $ = Thus, 
expanding aV/ax as a Taylor series we get 

and E = 

to lowest order jointly in e-eo and Thus stagnation points $ satisfy 

0 = Kl($ - + K,(E - eo) + K3 cos z (5.1) 

for small E -  eo and $ - Numerically, we have that dgo/dx < 0 at x = $implying that 
K3 > 0. From this equation it is clear that the effective c0 is decreased in the inflow 
(z = x), while it is increased in the outflow ( z  = 0). Equation (5.1) describes a saddle- 
node bifurcation of the skin friction field on the planes of the inflow and outflow 
boundaries. 

We also note that near the endplates of an experimental apparatus, fluid is driven 
inward toward the rotating cylinder. By the argument above, this should promote 
recirculation in the inflows. Thus in long cylinder systems we expect the inflows of the 
vortices near the ends to be more prone to recirculation than in the middle of the 
cylinders. This effect will be even more pronounced for short cylinders. This has indeed 
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FIGURE 9. The ‘flow skeleton’ for small-amplitude Taylor vortex flow with separation. The flow 
skeleton consists of the fixed point of the flow and skin friction fields together with some of their 
connecting orbits. There are two skin friction saddle points, q,  and qi and a source and sink p o ,  p i .  
The flow lines to the left and right of the recirculation region are for the skin friction field. In the fluid 
there are saddle spiral stagnation points at ro, ri. The bold lines H ,  and H ,  are heteroclinic connections 
from q, to qi. Note that the unstable manifold W,(q,) and the stable manifold W,(q,) are only partially 
drawn. In fact there are infinitely many heteroclinic orbits from q, to q i ;  W,(q,) and W,(qi) will 
intersect each other in a complicated manner. As can be seen from the diagram, there is no unique 
choice for a ‘separating surface’; in fact there will be streamlines that pass in and out of the 
recirculation region for all non-zero A .  

been found to be the case in our laboratory and in recent numerical investigations 
(Szeri & Al-Sharif 1993). 

6. Discussion 
Throughout this investigation we have taken the approach that we wish to find the 

simplest asymptotic model such that we can obtain answers to questions about the 
geometry of the flow field. Unfortunately, the stronger chaotic mixing occurs only 
when we perturb away from the integrable concentric case, precisely when the 
convergence of the asymptotic expansion can be called into question. However, the fact 
that the addition of second-order terms only slightly perturbs the flow patterns 
suggests that the predictions are valid. 

Particularly important is the modification made to ensure volume preservation. It is 
easy to adjust a vector field to ensure this, but simultaneously preserving the boundary 
conditions is a more difficult matter. We only managed to achieve both for the first- 
order approximation. We could only find perturbations of the second-order terms 
which either involve an aperiodic term in uc or break the boundary conditions on up (at 
high order). 

The stability or otherwise of these solutions do not concern us here. It is of course 
the case that for small enough eccentricities the bifurcation to Taylor vortices is 
supercritical (giving rise to stable vortex structure) but the case for large eccentricities 
(such that there is recirculation) is not known; the DiPrima & Stuart model predicts 
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supercritical bifurcation, but the region of validity is not known. Even disregarding the 
stability question, we feel that the results we have obtained are interesting from the 
point of view of showing that there are mixing streamlines even for time-independent 
flows close to Taylor vortex flow. 

6.1. A modulated vortex model 
It is important to develop an understanding of the physics which controls the breakup 
of the streamlines. With this objective in mind, we have investigated a simplified model 
of the mechanism by which the mixing occurs in the unseparated (small E )  limit. The 
vector field defined by the DiPrima & Stuart model can be thought of as a vortex 
encircling the cylinder that is periodically modulated in the azimuthal direction (the 
function B($) represents this modulation). Thus, we unwrap the cylinder and model the 
flow as a vortex with streamfunction $l periodically perturbed by a vortex pair with 
streamfunction $2. These two-dimensional streamfunctions in the (x, z)-plane and are 
given by 

where x,z and $ are as in the DiPrima & Stuart model. We define the following 
volume-preserving field : 

$l(x, z )  = sin x sin z ,  $z(x, z )  = sin 2x sin z, 

1 0, = - L ( l  a$ - A ( $ ) ) - L A ( $ ) .  
ax ax 

There are invariant surfaces at x,z = 0, 7c. for all $ and so we restrict to the box 
(x, z) E [0, 7c.I'. We take 

The streamfunction y?l defines a flow on the (x, z)-plane which consists of a single vortex 
in the region studied. The function A($) modulates this with a deformation $2 which 
moves the centre of the vortex periodically from side to side, in the x-direction. The 
case e = 0 is integrable, and increasing E away from zero breaks this integrability. This 
flow neither satisfies the Navier-Stokes equations nor any no-slip boundary conditions 
but has the same qualitative features, i.e. that of a generic area-preserving map. In fact 
equation (6.1) can be seen as a time-dependent one degree of freedom Hamiltonian 
system. In Appendix B of this paper, Professor George Rowlands shows how a 
Poincare map valid for small E can be constructed for model (6.1) which exhibits the 
basic features shown in figure 10. The principal importance of the map is that it shows 
that the physics is controlled by a single parameter which is a given function of the 
winding number of the invariant circles in the 

A($) = €COSZ$. 

= 0 case. 

6.2. Transport 
In this paper we have concentrated on the transport of fluid elements within a vortex, 
and it is clear from our investigations that the presence of a region of recirculation 
yields much stronger mixing than the weakly eccentric limit. We find that when the 
region of recirculation exists, most chaotic mixing occurs near MacKay's flow 
skeleton. 

For a real system with no-slip boundary conditions on the endplates, MacKay 
(1 994) has noted that there will be transport of particles between adjacent vortices, 
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FIGURE 10. For the modulated vortex model (6.1) these figures show results at differing levels of E ,  

the perturbation from integrability. In each case, the orbits of seven different initial conditions are 
shown. (a) The integrable case, E = 0. (b) E = 0.4; a period three island chain is prominent. (c) E = 0.6; 
most KAM tori have now been destroyed, permitting diffusion of streamlines throughout most of the 
fluid. 

even for the case of no diffusion. This is because of the destruction of the invariant 
planes z = 0 and z = R in the model (the translational symmetry in the z-direction is 
destroyed). However, for long cylinders we expect the mixing in and out of the 
recirculation region to be dominant over inter-vortex mixing, at least near the centre 
of the apparatus. 

By analogy with the concentric case, Taylor vortices are expected to go unstable to 
wavy vortices when a certain Taylor vortex amplitude is reached. This instability has 
been investigated theoretically by Weinstein (1977 a, b) and experimentally by Vohr 
(1968), Cole (1965, 1976), Ozogan & Mobbs (1980), and Zarti & Mobbs (1980). For 
wavy vortex flows enhanced mixing is expected, effectively due to the creation of a 
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four-dimensional volume-preserving system. However, MacKay (1994) notes that 
there may still be three-dimensional obstructions to the transport of fluid throughout 
the system. One possible extension of the present work is to investigate inter-vortex 
mixing using Weinstein’s asymptotic model. 

7. Conclusions 
In addition to the possible extensions of this work that we have already discussed, 

we emphasize that we have only just scratched the surface of the asymptotic model of 
DiPrima & Stuart. There remain many interesting predictions of the model yet to be 
discovered and this can provide an impetus for further numerical and experimental 
work on the eccentric rotating cylinders problem. In particular it would be interesting 
to collect some experimental observations of the recirculation and chaotic streamlines 
that we have observed numerically. One direction for further work is to use the 
expression for Taylor vortex amplitude B(4) from the nonlinear theory DiPrima & 
Stuart (1975), Eagles et al. (1978), which would give more accurate quantitative 
predictions of separation. However by the genericity argument already outlined we do 
not expect that introducing higher-order approximations would remove the presence 
of e.g. chaotic advection in the Taylor vortices. The ensuring of volume preservation 
was performed using an ad hoc method; work is in progress to find more efficient and 
generally applicable methods. 

Practically, our methods would be just as applicable to the case q2 =l 0, the outer 
cylinder rotating as well. In this case we could investigate the possibility of Taylor 
vortex instability of the two-dimensional flow with recirculation zones in the interior 
of the flow (see figures 14-16 in Ballal & Rivlin 1977). 

In the introduction we pointed out that a major source of concern is the worry that 
the bifurcations in the streamline topology of the truncated equations may not be 
related in any qualitative way to the actual transitions in the fluid. This is certainly the 
case for the Lorenz equations as a model of Rayleigh-Benard convection. The source 
of the problem there was investigated in depth by Marcus (1981) who identified the 
physically important process (boundary-layer behaviour) which the Lorenz-type 
models failed to model sufficiently well. In the present case, a similar study would be 
of considerable value. 

Final remark 
We end this paper with the following remark. The dynamical system which determines 
the streamlines can be thought of as being hierarchical; this is a dynamical system 
determined by the Navier-Stokes equations which evolves towards a fixed flow field. 
This flow field determines the streamlines; a change in parameters may distort the 
velocity field but not give rise to a bifurcation to a different flow pattern. Nevertheless, 
changes in parameters can lead to bifurcations in the dynamics of the streamlines. 
Whether this view can be exploited to obtain a deeper understanding of stability and 
transition of the flow patterns themselves, remains to be discovered. 

Thanks are due to Kryzstof Banas, Tom Bridges, Alison Cooper, Philip Drazin, Paul 
Duineveld, Norbert Ligterink, Jeroen Nijhof, John Phelps, Robert MacKay, David 
Rand, George Rowlands, Chris Shaw and J. T. Stuart for conversations which 
contributed to our understanding of this system. We thank the SERC Nonlinear 
Initiative for support during this research and the referees for their valuable comments. 
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Appendix A. The modified equations 

are given by 
Expressions for the volume-conserving modification to the two-dimensional flow 

qx, $) = - ((2x + 1) (2x - 1)Z 

x (8ek T A / 2 ~ ~ ~ ( $ ) ~ 3 - 4 e k T i / 2 ~ ~ ~ ( $ ) ~ 2 -  lock T i / 2 ~ ~ ~ ( $ ) ~  

-480ecos (9) sin ($) - 240 sin (4) - 3k Ti1' cos ($) 6 )  

x (2 - 2 cos (4) e + 2))/( 1920 + 7680e2k2x + 3840k2e2), 

P(x, $) = (2x- 1) (482k Ti/2 sin (4) x4 - 162k Ti/2 sin (4) x3 
- 48s2k Ti/' sin ($) x2 + 7202 cos ($)2x + 480e2k2x + 360.2~ 

+ 720scos ($) x- 12e2kTi/2 sin (4) x+ 120cos (4) e +  120s2cos ($)' 
+ e2k Ti/' sin ($) - 240 + 300e2 + 240k22) (2 - 2 cos (4) 6 + e2)/480. 

Routine calculations show that these agree with the original expressions (111,2.5), (111, 
2.6), (111, 2.7) up to and including terms of O(2). 

Appendix B. Approximation of the return map for the modulated vortex 
model 

By G. Rowlands 
Department of Physics, University of Warwick, Coventry CV4 7AL, UK 

In the case of small 6 one can analytically construct a Poincark map approximating the 
return map of (6.1) which exhibits the basic features shown in figure 10. The principal 
importance of the map is that it shows that the physics is controlled by a single 
parameter which is a given function of the winding number of the invariant circles 
(stream tubes) in the e = 0 case. 

The method of obtaining the map is similar to that used in plasma physics to study 
the motion of charged particles in spatially non-uniform magnetic fields. In that 
context the system is described by a quantity p ,  a so-called adiabatic invariant, which 
is essentially the local magnetic moment associated with the gyro-magnetic rotation of 
the charged particle, and an angle 6' known as the Larmor phase angle. In the present 
case the role of the adiabatic invariant is the streamfunction = sin x sin z and the 
phase angle is $ - a time-like variable. 

In the aforementioned case of the motion of charged particles, it is well understood 
that the reason one gets chaos is the resonance between the Larmor frequency wL and 
a frequency associated with the non-uniformity of the magnetic field wN (Lichtenberg 
& Lieberman 1982). Chirikov (1979) has studied this resonance behaviour in general 
Hamiltonian systems and has shown how these systems can, with suitable 
approximations, be reduced to a study of simple maps. In the present problem wL 
corresponds to the frequency of the streamlines winding around a stream tube, and wN 
corresponds to the modulation in $ which here is equal to 1. 

We can rewrite equations (6.1) in the form 

I dx 
- = sinxcosz{l-~h($)[1-2cosx]}, 
d$ 
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and define an effective time r such that 
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dr  
-= l-eh(~)[1-2cosx] 
d4 

in which case equations (B 1) reduce to 

dx - = sin x cos z, 
dr 

dz 
- = - cos x sin z+ 2 ~ 4 4 )  sin z sin2 x + O(e2). 
dr 

These equations may be solved using a multiple time perturbation theory asymptotic 
as E + 0. Thus we introduce two times ro = r and r1 = e ~ ,  treat them as independent 
variables and formally expand x and z as follows (cf. Rowlands 1990): 

x = xo(ro, r,) + ex, + . . ., z = zo(ro, r l )  + EZ1 + . . . . 
At order EO we get 

-- d x ~  - sin x, cos z,, - d z ~  = - cos x, sin z,, 
dT0 d70 

which may be rewritten in the form 

KO = sin x, sin z, (a constant), 

and 
2 (2) = sin2x,-Kt. 

This gives 
sin x, = dn (ro + I+, k,) 

where dn (x,k) is a Jacobian elliptic function, k: = 1 - K :  and both the phase factor I+ 
and k, must be considered to be functions of 7,. To order el we get 

dx -- dxl (cos x, cos 2,) x1 + KO z1 = - -2, 
dT0 d71 

dr0 d71 

dz, dz 
- + (cos x, cos z,) z1 -KO x, = -0 + 2h(4) sin z,, sin2 x,. 

Eliminating z1 from the two equations gives 

d2x, dz )"d:,. drl dr; 
+ cos xo cos zo - + KO -3 - 2h(q5) KO sin2 x, sin z,, -- 

and using the equation for dx,/dr, finally gives 

-- - 244)  K : sin x,. 
d2x, 
dr: 

Since 
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and x, is periodic with period T, if we demand that x1 is also periodic in T, then we have 

dx, 
JOT {KO 2 - cos x, cos zo dTO = Ki  JOT A(#) sin x, - dT0 d7,. 

Since KO is constant on the T, time scale. 

sin x, = dn (T, + $, k,) we find that 
We allow @ and k,, which appear in sinx,, to be functions of T ~ .  With 

d dx, 
(sinx,cosz,) = ---, dz, d 

Ko- -cosxocoszo~  dT1 = -- dT1 
d71 d7, dT1 

since KO = sin x, sin z,. Thus our consistency condition takes the form 

d 
dT0 

d7, = - K t  JOT A(#) - (cos x,) d7,. 

On the right-hand side we may replace A($) by A(T,) to lowest order and if the 
integration over T,  is between zeros of (dx,/dT,)2, we have 

The integral on the left-hand side will be independent of @ but is a function of k, so 

d dk d -+A- 
dT1 dT1 dk,' 

Recalling that K i  = 1 + ki, the left-hand side then gives 

(sin2 x, - Ki)l/' dx, 

dx, = 2k,& 
dk dT1 p"' $2) (sin2 x, - Kt)1/2 

where dx,/dT = 0 for x, = x;),(~). But 

so that (B 2) reduces to 
d 

dk' - 4f' loT A(7,) (COS x,) dTO 
d71 

with cos x, = - k ,  sn (7, + $, k,). Define I by 

d 
I = - A(TO) - (COS X0) dTO 

;JOT dTO 
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which is equivalently 
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I = -- h(rO) cn (7, + $) dn (70 + $) drO. loT 
The limits of the integration are over a period but are between points where 
dxo/d.ro = 0. These are where dn(~'+$) = f KO or cn(rO+$) = 0, so the limits are 
T/4 - $ and 5T/4 - $. We now let ro + $ = s to give 

5T/4 
I =  -- k0 h(s-$)cn(s)dn(s)ds. 

JT14 

If h = A, cos24 = +Ao( 1 + cos 24), then 

5T/4 
I = - - -  k' " (1 + cos 2s cos 2$ - sin 2s sin 2$) cn (s) dn (s) ds. 

2T l T / 4  

Evaluating the first integral we find 

rTi4 cn (s) dn (s) ds = sn (s) lg7L4 = 0 

since sn (T+ x) = sn (x). 

J T/4 

We now get 

I =  Acos2$+Bsin2$, 
5T/4 

A=--  ko " cos 2s cn (s) dn (s) ds, 
2T JT/4  

5T/4 
B=-  ko " sin 2s cn (s) dn (s) ds 

2T I T / *  

so that 
dk2 -- ' - 4Kt(Acos2$+Bsin2$). 
d71 

By definition 
dr -- - l-eh(4)(1-2cosx), 
d4 

so to lowest order we identify ro with 4 and since 7 = ro+$, 

T 
- d$ = -+lo h(+)(l -2cosxo)dq4 
d4  

where we have removed the periodic variation in x and, because of the e preceding the 
integral, we can take the lowest-order value of x. With 7' = 4, I$ = r1 the above gives 

We note that +loT cos2 4 cos xo d4 = -- cos2 ro sn ( T ~  + $) dTO. 1: 
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If we choose the limits of integration as before we get 
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;JOT cos2 q5 cos xo dq5 = -- cos2 (s - $) sn (s) ds $ C4/' 
ko = --[D+xcos21C.+Bsin2$], 2 

where 

- 
A = $c4j4 cos 2s sn (s) ds, 

- 1 5T/4 
B = -  sin 2s sn (s) ds. 

T J T / 4  

Thus we have 
dki - _  - 4Ki(A cos 2$ -I- B sin 2$), 
d71 I 

where A ,  B, 2, B, D are all functions of KO. 
Finally we integrate these equations over one period and write 

where n denotes the value after n iterations of the PoincarC Section. We treat the right- 
hand side of the equations as constant over this time scale so we finally obtain a map 
of the form 

(ki)n+l = (ki), + 4KieT[A cos 2$n + B sin 2$,], 

$,+I= $ n - S T f f n ,  

where H ,  is the right-hand side of (B 3) evaluated at k = k, and $ = $.,. This is a 
symplectic map and is of the form of maps arising in other branches of physics, as 
discussed by Lichtenberg & Liebermann (1982). 

This map has not been studied in detail but preliminary calculations show that 
A - B - 0 for ki = 0.8 which shows the existence of a fixed point of the map for this 
value of k,. The lowest-order solution x,  is periodic with period three for ki - 0.8 and 
thus the fixed point of the map can be associated with the period-three island chain 
found numerically and illustrated in figure lO(b). 

For E = 0 we see that ki is constant independent of n and the phase portrait is then 
as shown in figure lO(a) with each closed curve corresponding to a different value of 
k,. For E > 0 we expect the emergence of a period-three island chain centred about a 
value of ki - 0.8. By analogy with the well-known results obtained from studies of, for 
example, the Chirikov map we expect the onset of chaotic regions as E is increased and 
the emergence of a fully chaotic solution for sufficiently large values of c. 
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